Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\int \frac{7 x^{8}+8 x^{7}}{\left(1+x+x^{8}\right)^{2}} d x=f(x)+c_{2}$ then $f(x)$ is equal to

EAMCETEAMCET 2010

Solution:

$\int \frac{7 x^{8}+8 x^{7}}{\left(1+x+x^{8}\right)^{2}} d x=f(x)+c$
here better way to solve this integration we will check the options ie,
we will differentiate the option one by one and check the integration function
Taking option (a) we see that,
$f(x) =\frac{d}{d x}\left\{\frac{x^{8}}{\left(1+x+x^{8}\right)}\right\}$
$=\frac{\left[\left(1+x+x^{8}\right) \cdot 8 x^{7}-x^{8}\left(1+8 x^{7}\right)\right]}{\left(1+x+x^{8}\right)^{2}}$
$f(x)=\frac{\left(8 x^{7}+8 x^{8}+8 x^{15}-x^{8}-8 x^{15}\right)}{\left(1+x+x^{8}\right)^{2}}$
$f(x)=\frac{\left(7 x^{8}+8 x^{7}\right)}{\left(1+x+x^{8}\right)^{2}}$
Hence, $\int \frac{7 x^{8}+ 8 x^{7}}{\left(1+x+x^{8}\right)^{2}} d x=\frac{x^{8}}{\left(1+x+x^{8}\right)}+c$