Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\int \frac{2^x}{\sqrt{1-4^x}} d x=K \sin ^{-1}\left(2^x\right)+C$, then $K$ is equal to

Integrals

Solution:

Let $2^x=t \quad 2^x \log 2 d x=d t$
$I=\frac{1}{\log 2} \int \frac{d t}{\sqrt{1-t^2}}=\frac{1}{\ln 2} \sin ^{-1}(t)+c=\frac{1}{\ln 2} \sin ^{-1}\left(2^x\right)+c$
$ \Rightarrow k=\frac{1}{\ln 2}$