Thank you for reporting, we will resolve it shortly
Q.
If $\int^{2}_{-3} f\left(x\right)dx = \frac{7}{3} $ and $\int^{9}_{-3} f\left(x\right)dx = - \frac{5}{6} , $ then
what is the value of $\int^{9}_{2} f\left(x\right)dx $ ?
Integrals
Solution:
Value of the integral $\int^{9}_2 f(x) dx$
$= \int^{9}_{-3} f\left(x\right)dx - \int^{2}_{-3} f\left(x\right)dx $
Given, $\int^{9}_{-3} f\left(x\right)dx = \frac{-5}{6}$ and $ \int^{2}_{- 3}f\left(x\right)dx = \frac{7}{3} $
Putting these values in equation (i)
$\int^{9}_{2} f\left(x\right)dx = \frac{-5}{6} - \frac{7}{3} = - \frac{19}{6} $