Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $I_{n}=\int \sin^{n} x \,dx ,$ then $nI_{n}-\left(n-1\right)I_{n-2}$ equals

VITEEEVITEEE 2009

Solution:

We know that, if
$I_{n}=\int \sin ^{n} x \,d x, $ then
$I_{n}=-\frac{\sin ^{n-1} x \cos x}{n}+\frac{n-1}{n} I_{n-2}$
where $n$ is a positive integer.
$\Rightarrow n I_{n}-(n-1) I_{n-2}=-\sin ^{n-1} x \cos x$