Q. If $I_n=\int \frac{ e ^{( n +1) x } dx }{\left(1+ e ^{ x }+\frac{ e ^{2 x }}{2 !}+\ldots \ldots+\frac{ e ^{ nx }}{ n !}\right)}=\lambda_{ n }\left( e ^{ x }-\ln \left( f _{ n }( x )\right)\right)+ C$ where $f_n(0)=1+\frac{1}{1 !}+\frac{1}{2 !}+\ldots \ldots+\frac{1}{n !}$ and $C$ is constant of integration and $g(x)=\underset{n \rightarrow \infty}{\text{Lim}} \ln \left(f_n(x)\right)$, then find the number of real solutions of the equation $g(x)=4 x^2$.
Integrals
Solution: