Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $I(m, n)=\int\limits_{0}^{1} x^{m-1}(1-x)^{n-1} d x$, then

Integrals

Solution:

Putting $x=\frac{1}{1+y}, d x$
$=-\frac{1}{(1+y)^{2}} d y$, we get
$I(m, n) =\int\limits_{0}^{1} x^{m-1}(1-x)^{n-1} d x$
$=\int\limits_{\infty}^{0} \frac{1}{(1+y)^{m-1}}\left(1-\frac{1}{1+y}\right)^{n-1} \frac{(-1)}{(1+y)^{2}} d y$
$=\int\limits_{0}^{\infty} \frac{y^{n-1}}{(1+y)^{m+n}} d y=\int_{0}^{\infty} \frac{x^{n-1}}{(1+x)^{m+n}} d x$
Since $I(m, n)=I(n, m), I(m, n)$
$=\int_{0}^{\infty} \frac{x^{m-1}}{(1+x)^{m+n}} d x=\int\limits_{0}^{\infty} \frac{x^{n-1}}{(1+x)^{m+n}} d x $