Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ g(x) $ is the inverse of $ f(x) $ and $ f'(x)=\cos x, $ then $ g'(x) $ is equal to

J & K CETJ & K CET 2011Continuity and Differentiability

Solution:

Given, $ g(x) $ is the inverse of $ f(x) $ and $ f'(x)=cos\,\,x $ ..(i)
$ \Rightarrow $ $ g(x)={{f}^{-1}}(x) $
$ \Rightarrow $ $ x=f(g(x)) $
On differentiating
$ \Rightarrow $ $ 1=f'\,(g(x)).g'(x) $
$ \Rightarrow $ $ g'(x)=\frac{1}{f'(g(x))}=\frac{1}{\cos \,(g(x))} $
[from Eq.(i)]
$ \Rightarrow $ $ g'(x)=sec\,g\,(x) $