Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If for the matrix, $A = \begin{bmatrix}1&-\alpha\\ \alpha&\beta\end{bmatrix}, AA^{T} = I_{2}, $ then the value of $\alpha^4 + \beta^4$ is

JEE MainJEE Main 2021Matrices

Solution:

$A = \begin{bmatrix}1&-\alpha\\ \alpha&\beta\end{bmatrix}, AA^{T} = I_{2} $
$\Rightarrow \begin{bmatrix}1& -\alpha\\ \alpha&\beta\end{bmatrix}\begin{bmatrix}1&\alpha\\ -\alpha&\beta\end{bmatrix}=\begin{bmatrix}1&0\\ 0&1\end{bmatrix} $
$\Rightarrow \begin{bmatrix}1+\alpha^{2}&\alpha-\alpha\beta\\ \alpha-\alpha\beta&\alpha^{2}+\beta^{2}\end{bmatrix}=\begin{bmatrix}1&0\\ 0&1\end{bmatrix} $
$\Rightarrow \alpha^2 = 0 $ & $\beta^2 = 1$
$\therefore \alpha^4 + \beta^4 = 1$