Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If for an ideal gas, the ratio of pressure and volume is constant and is equal to $1 \,atm \,L ^{-1},$ the molar heat capacity at constant pressure would be

Thermodynamics

Solution:

By definition

$H=E+P V$

$\left(\frac{d H}{d T}\right)_{P}=\left(\frac{d E}{d T}\right)_{P}++P\left(\frac{d V}{d T}\right)_{P}=C_{p, m}$

For the given ideal gas, we will have $P V=R T$

or $\,\,\,\, V^{2}=R T\,\,\,\,$ or $\,\,\,\, 2 V\left(\frac{d V}{d T}\right)_{P}=R$

or $\,\,\,\,\left(\frac{d V}{d T}\right)_{P}=\frac{R}{2 V}$

$E=\frac{3 R T}{2}$

or $\left(\frac{d E}{d T}\right)_{P}=\frac{3}{2} R=C_{v, m}$

$C_{p}, m=\frac{3}{2} R+P \times \frac{R}{2 V}=\left(\frac{3}{2}+\frac{1}{2}\right) R=2 R$