Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If for a matrix $ A, A^2 + I = 0 $ , where $ I $ is the Identity matrix of order $2$, then $A$ =

AMUAMU 2012Matrices

Solution:

Let $A =\begin{bmatrix}i & 0 \\ 0 & i\end{bmatrix} $
$ \therefore A^{2} =\begin{bmatrix} i & 0 \\ 0 & i\end{bmatrix}\begin{bmatrix}i & 0 \\ 0 & i\end{bmatrix} $
$=\begin{bmatrix} -1 & 0 \\ 0 & -1\end{bmatrix} $
$ \therefore A^{2}+I =\begin{bmatrix}-1 & 0 \\ 0 & -1\end{bmatrix}+\begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix} $
$=\begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}=0$, which is true.