Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $f\left(y\right)=e^{y} , g\left(y\right) = y; y>0$ and $ F\left(t\right) = \int\limits^{t}_{0} f\left(t -y\right)g\left(y\right)dy, $ then

Continuity and Differentiability

Solution:

$F\left(t\right) = \int\limits^{t}_{0} f\left(t-y\right)g\left(y\right)dy $
$ = \int\limits^{t}_{0}e^{t-y} ydy = e^{t} \int\limits^{t}_{0}e^{-y} ydy$
$ = e^{t} \left[-ye^{-y} - e^{-y}\right]^{t}_{0} = -e^{t} \left[ye^{-y} +e^{-y}\right]^{t}_{0} $
$=-e^{t} \left[te^{-t} + e^{-t} -0-1\right]=-e^{t} \left[\frac{t+1-e^{t}}{e^{t}}\right] $
$= e^{t} -\left(1+t\right) $