Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(y) = 1 - (y - 1) + (y - 1)2 - (y - 1)3 + ... - (y - 1)17, then the coefficient of y2 in it is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If $f(y) = 1 - (y - 1) + (y - 1)^2 - (y - 1)^3 + ... - (y - 1)^{17},$ then the coefficient of $y^2$ in it is
AIEEE
AIEEE 2012
Binomial Theorem
A
${^{17}C_2}$
13%
B
${^{17}C_3}$
23%
C
${^{18}C_2}$
26%
D
${^{18}C_3}$
39%
Solution:
Given function is
$f(y) = 1 - (y - 1) + (y - 1)^2 - (y - 1)^3 + ........ - (y - 1)^{17}$
In the expansion of $(y - 1)^n$
$T_{r+1} = {^{n}C_{r} } y^{n-r} \left(-1\right)^{r} $
coeff of $y^2$ in $(y - 1)^2 = {^2C_0}$
coeff of $y^2$ in $(y - 1)^3 = {^{-3}C_1}$
coeff of $y^2$ in $(y - 1)^4 = {^4C_2}$
So, coeff of termwise is
$^{2}C_{0} + ^{3}C_{1} + ^{4}C_{2} + ^{5}C_{3} + ....... +^{17}C_{15} $
$ = 1 + ^{3}C_{1} + ^{4}C_{2} + ^{5}C_{3} +....... + ^{17}C_{15}$
$ = \left(^{3}C_{0} + ^{3}C_{1} \right) + ^{4}C_{2} + ^{5}C_{3} + ....... + ^{17}C_{15}$
$ = ^{4}C_{1} + ^{4}C_{2} + ^{5}C_{3} +.......+^{17}C_{15} $
$= ^{5}C_{2} + ^{5}C_{3} + ....... + ^{17}C_{15} $
$= ^{18}C_{15} = ^{18}C_{3} $