Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $f( x , y )=(\max ( x , y ))^{\min ( x , y )}$ and $g( x , y )=\max ( x , y )-\min ( x , y )$, then$f\left(g\left(-1,-\frac{3}{2}\right), g(-4,-1.75)\right)$ equals

Relations and Functions - Part 2

Solution:

$g\left(-1,-\frac{3}{2}\right)=\max \left(-1,-\frac{3}{2}\right)-\min \left(-1,-\frac{3}{2}\right)=-1-\left(-\frac{3}{2}\right)=\frac{1}{2}$
and$g (-4,-1.75)=\max (-4,-1.75)-\min (-4,-1.75)=-1.75-(-4)=2.25=\frac{9}{4}$
Then
$\left. f \left(\frac{1}{2}, \frac{9}{4}\right)=\left(\max \left(\frac{1}{2}, \frac{9}{4}\right)\right)^{\min \left(\frac{1}{2}, \frac{9}{4}\right)}=\left(\frac{9}{4}\right)^{\frac{1}{2}}=\frac{3}{2}\right]$