Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(x) = ( x tan 2x/ sin 3x sin 5x) is continuous at x = 0, then f (0) is equal to:
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If $ f(x) = \frac{ x \, tan \, 2x}{\sin \, 3x \, \sin \, 5x}$ is continuous at $x = 0$, then $f (0)$ is equal to:
Continuity and Differentiability
A
$\frac{1}{15}$
10%
B
$\frac{15}{2}$
18%
C
$\frac{2}{15}$
60%
D
none of these
11%
Solution:
Given function is :
$ f(x) = \frac{ x \, tan \, 2x}{sin \, 3x \, sin \, 5x}$
If $f(x)$ is continuous at $x = 0$, then limit
$x \rightarrow 0 $ should exist and $f (0) =\displaystyle\lim_{x \rightarrow 0} \, f(x)$
So, $f(0) = \displaystyle\lim_{x \rightarrow 0} \frac{x \, tan \, 2x}{sin \, 3x \, sin \, 5x}$
Multiplying Nr and Dr by 3,we get
$\Rightarrow \:\:\:\: f(0) = \displaystyle\lim_{x \rightarrow 0} \frac{1}{3} \left( \frac{3x}{sin \, 3x} \right) \frac{tan \, 2x}{sin \, 5x}$
$\Rightarrow \:\:\:\: f(0) = \frac{1}{3} \displaystyle\lim_{x \rightarrow 0} \left( \frac{3x}{sin \, 3x} \right) \displaystyle\lim_{x \rightarrow 0} \frac{tan \, 2x}{sin \, 5x}$
$ = \frac{1}{3} \displaystyle\lim_{x \rightarrow 0} \frac{tan \, 2x}{sin \, 5x} \:\:\:\:\:\:\: \bigg[ \because \:\:\: \displaystyle \lim_{x \rightarrow 0} \frac{x}{sin \, x} = 1 \bigg] $
$\Rightarrow \, f(0) = \frac{1}{3} \displaystyle\lim_{x \rightarrow 0} \frac{tan \, 2x}{2x} \times 2x \frac{5x}{sin \, 5x}. \frac{1}{5x} $
$ = \frac{1}{3}. \displaystyle\lim_{x \rightarrow 0} .\frac{tan \, 2x}{2x}. \displaystyle\lim_{x \rightarrow 0} . \frac{5x}{sin \, 5x}. \frac{2x}{5x} $
$ \Rightarrow \:\:\: f(0) = \frac{1}{3} .1.1. \frac{2}{5} = \frac{2}{15}$