Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $f(x)=x^n+4$, then the value of $f(1)+\frac{f^{\prime}(1)}{1 !}+\frac{f^{\prime \prime}(1)}{2 !}+\frac{f^{\prime \prime \prime}(1)}{3 !}+\ldots+\frac{f^n(1)}{n !}$ is

Continuity and Differentiability

Solution:

$f(1)=5, f^{\prime}(x)=n x^{n-1}, f^{\prime \prime}(x)=n(n-1) x^{n-2}$
So, $ f^{\prime}(1)=n$
$f^{\prime \prime}(1)=n(n-1) \ldots f^n(1)=12 \ldots n$
Thus, $f(1)+\frac{f^{\prime}(1)}{1 !}+\ldots+\frac{f^n(1)}{n !}$
$ =5+\frac{n}{1}+\frac{n(n-1)}{2 !}+\ldots+\frac{n !}{n !} $
$ =(1+1)^n+4=2^n+4$