Thank you for reporting, we will resolve it shortly
Q.
If $f ( x )= x$ and $g ( x )=| x |$, then $( f + g )( x )$ is equal to
Relations and Functions
Solution:
Given functions are: $f ( x )= x$ and $g ( x )=| x |$
$\therefore (f+g)(x)=f(x)+g(x)=x+\mid x|$
According to definition of modulus function,
$(f + g) (x) =
\begin{cases}
x + x, & x \ge 0 \\[2ex]
x - x, & x < 0
\end{cases} = \begin{cases}
2x, & x \ge 0 \\[2ex]
0, & x < 0
\end{cases}$