Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $f(x) = x^6 + 6^x$, then $f’(x) $ is equal to

KEAMKEAM 2018

Solution:

$f(x)=x^{6}+6^{x}$
$f'(x)=6 x^{5}+6^{x} \log (6)$
$\left[\because \frac{d}{d x}\left(x^{n}\right)=n x^{n-1}\right]$
$[\left.\because \frac{d}{d x}\left(a^{x}\right)=a^{x} \log (a)\right]$