Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $f \left(x\right) = x^{2} -x + 5, x > \frac{1}{2},$ and $g(x)$ is its inverse function, then $g'(7)$ equals :

JEE MainJEE Main 2014Continuity and Differentiability

Solution:

$f(x)=x^{2}-x+5, x>\frac{1}{2}$
$y=x^{2}-x+5$
$x^{2}-x+5-y=0$
$x=\frac{1 \pm \sqrt{1+4(y-5)}}{2}$
$g(x)=\frac{1 \pm \sqrt{1+4(x-5)}}{2}$
$g^{\prime}(x)=4 \times \frac{1}{2 \sqrt{1}+4(x-5)} \times \frac{1}{2}$
$g^{\prime}(7)=\frac{1}{3}$