Q. If $f(x)=\underset{n \rightarrow \infty}{\text{Lim}} n \left(x^{\frac{1}{n}}-1\right),(x>0)$ and $\int x^x(f(x)+1) d x=(g(x))^{h(x)}+c$, where $g(x)$ and $h(x)$ both are linear functions of $x$. If $g(1)=1$, then $h(1)$ is equal to (where $c$ is constant of integration)
Integrals
Solution: