Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ f(x)=\tan x-{{\tan }^{3}}x+{{\tan }^{5}}x-..... $ to $ \infty $ with $ 0
KEAMKEAM 2006

Solution:

$ f(x)=\tan x-{{\tan }^{3}}x+{{\tan }^{5}}x-....\infty $ $ f(x)=\frac{\tan x}{1+{{\tan }^{2}}x}=\frac{\tan x}{{{\sec }^{2}}x}=\frac{\sin 2x}{2} $ $ \therefore $ $ \int_{0}^{\pi /4}{f(x)}dx=\int_{0}^{\pi /4}{\frac{\sin 2x}{2}} $ $ =\left[ -\frac{\cos 2x}{4} \right]_{0}^{\pi /4} $ $ =\frac{1}{4} $