Thank you for reporting, we will resolve it shortly
Q.
If $ f(x)= \frac {sin \,x} {{e}^{x}} $ in $ [0,\pi ], $ then $ f(x) $
J & K CETJ & K CET 2007Continuity and Differentiability
Solution:
Given, $ f(x)=\frac{\sin x}{{{e}^{x}}} $
$ f(0)=0,\,f\,(\pi )=0 $
$ f(x) $ is continuous in $ [0,\pi ]. $
since, every exponential function and trigonometric functions is continuous in their domain and it is differentiable the open interval.
Now $ f'(x)=\frac{{{e}^{x}}(\cos \,x-\sin \,x)}{{{e}^{x}}} $
Put $ f'(x)=0 $
$ \Rightarrow $ $ \cos \,x\,-\,\sin \,x=0 $
$ \Rightarrow $ $ x=\frac{\pi }{4} $
$ \therefore $ $ f'\left( \frac{\pi }{4} \right)=0 $