Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $f(x)=\sin \,x+\cos \,x, g(x)=x^{2}-1$, then $g(f(x))$ is invertible in the domain

Relations and Functions - Part 2

Solution:

$f(x)=\sin\, x+\cos\, x, g(x)=x^{2}-1$
$\Rightarrow g(f(x))=(\sin\, x+\cos\, x)^{2}-1=\sin \,2 x$
Clearly $g(f(x))$ is invertible in
$-\frac{\pi}{2} \leq 2 x \leq \frac{\pi}{2}$
$[\because \sin \,\theta$ is invertible when $-\pi / 2 \leq \theta \leq \pi / 2]$
$\Rightarrow -\frac{\pi}{4} \leq x \leq \frac{\pi}{4}$