Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If f(x) = sin (log x) and $y = f\left(\frac{2x+3}{3-2x}\right)$, then $\frac{dy}{dx}$ equals

AIEEEAIEEE 2012Continuity and Differentiability

Solution:

Let $f'\left(x\right) = sin \left[log x\right]$ and $y = f\left(\frac{2x+3}{3-2x}\right)$
Now, $\frac{dy}{dx} = f' \left(\frac{2x+3}{3-2x}\right) . \frac{d}{dx}\left(\frac{2x+3}{3-2x}\right)$
$= sin\left[log\left(\frac{2x+3}{3-2x}\right)\right] \frac{\left[\left(6-4x-\right)-4x\left(-6\right)\right]}{\left(3-2x^{2}\right)}$
$= \frac{12}{\left(3-2x^{2}\right)}sin\left[log\left(\frac{2x+3}{3-2x}\right)\right]$