Q.
If $f(x)=\sin ^{-1}\left(\frac{4 x}{4+x^2}\right)-\frac{2}{3} \tan ^{-1}\left(\frac{x}{2}\right)$ and $g(x)=\begin{cases}2|x|-2, & 1 \leq|x| \leq 2 \\ \ln (1+[|x|]), & -1< x< 1\end{cases}$
where $[ k ]$ denotes greatest integer less than or equal to $k$, and $x \in[-2,2]$, then number of solution(s) of the equation $| f ( x )|= g ( x )$ is(are)
Inverse Trigonometric Functions
Solution: