Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ f(x) $ satisfies the relation $ 2f(x)+f(1-x)={{x}^{2}} $ for all real $ x, $ then $ f(x) $ is

KEAMKEAM 2009Relations and Functions

Solution:

Given, $ 2f(x)+f(1-x)={{x}^{2}} $ ...(i)
Replacing $ x $ by $ (1-x), $ we get
$ 2f(1-x)+f(x)={{(1-x)}^{2}} $
$ \Rightarrow $ $ 2f(1-x)\,+f(x)=1+{{x}^{2}}-2x $ ...(ii)
On multiplying Eq. (i) by 2 and subtracting from Eq. (ii), we get
$ 3f(x)={{x}^{2}}+2x-1 $
$ \Rightarrow $ $ f(x)=\frac{{{x}^{2}}+2x-1}{3} $