Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $f(x) = \log_5\log_3x$, then $f'(e)$ is equal to

WBJEEWBJEE 2017Continuity and Differentiability

Solution:

We have,
$f(x) =\log _{5} \log _{3} x $
$=\frac{\log \log _{3} x}{\log 5}$
$=\frac{\log \left(\frac{\log x}{\log 3}\right)}{\log 5} $
$=\frac{\log \log x-\log \log 3}{\log 5} $
$\therefore f^{\prime}(x) =\frac{1}{\log 5} \cdot \frac{1}{\log x} \cdot \frac{1}{x}$
$ \therefore f^{\prime}(e) =\frac{1}{e \log 5 \cdot \log e} $
$=\frac{1}{e \log 5} [\because \log e=1] $
$=\frac{1}{e \log _{e} 5} $