Thank you for reporting, we will resolve it shortly
Q.
If $ f(x) $ is defined $ [-2,2] $ by $ f(x)=4{{x}^{2}}-3x+1 $ and $ g(x)=\frac{f(-x)-f(x)}{{{x}^{2}}+3}, $ then $ \int_{-2}^{2}{g(x)}dx $ is equal to
JamiaJamia 2008
Solution:
Given that, $ f(x)=4{{x}^{2}}-3x+1,g(x)=\frac{f(-x)-f(x)}{{{x}^{2}}+3} $ $ \therefore $ $ g(x)=\frac{(4{{x}^{2}}+3x+1)-(4{{x}^{2}}-3x+1)}{{{x}^{2}}+3} $ $ =\frac{6x}{{{x}^{2}}+3} $ Now, $ g(-x)=-\frac{6x}{{{x}^{2}}+3} $ $ =-g(x) $ Which is an odd function $ \therefore $ $ \int_{-2}^{2}{g(x)}\,dx=0 $