Q. If $f\left(\right.x\left.\right)$ is a differentiable function such that $f^{'}\left(\right.1\left.\right)=4$ and $f^{'}\left(\right.4\left.\right)=\frac{1}{2},$ then value of $\underset{x \rightarrow 0}{lim}\frac{f \left(x^{2} + x + 1\right) - f \left(\right. 1 \left.\right)}{f \left(x^{4} - x^{2} + 2 x + 4\right) - f \left(\right. 4 \left.\right)}$ is
NTA AbhyasNTA Abhyas 2022
Solution: