Thank you for reporting, we will resolve it shortly
Q.
If $f(x)=\int\limits_{0}^{x} e^{t^{2}}(t-2)(t-3) d t$ for all $x \in(0, \infty),$ then
AIEEEAIEEE 2012
Solution:
$f'(x)=e^{x^{2}}(x-2)(x-3)$
Clearly, maxima at $x=2,$ minima at $x=3$ and
decreasing in $x \in(2,3)$.
$f'(x)=0$ for $x=2$ and $x=3 $ (Rolle's theorem)
so there exist $c \in(2,3)$ for which
$f''(c)=0$