Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ f(x)=\int_{1}^{x}{\sqrt{4-{{t}^{2}}}}\,\,\,dt, $ then real roots of the equation $ x-f'(x)=0 $ are

J & K CETJ & K CET 2012Integrals

Solution:

Given, $ f(x)=\int_{1}^{x}{\sqrt{4-{{t}^{2}}}}\,\,dt $
On differentiating w. r. t. x, we get
$ f'(x)=\sqrt{4-{{x}^{2}}} $ (1)
$ \therefore $ $ x-f'(x)=x-\sqrt{4-{{x}^{2}}}=0 $
$ \Rightarrow $ $ x=\sqrt{4-{{x}^{2}}} $
$ \Rightarrow $ $ {{x}^{2}}=4-{{x}^{2}} $
$ \Rightarrow $ $ 2{{x}^{2}}=4 $
$ \Rightarrow $ $ {{x}^{2}}=2 $
$ \Rightarrow $ $ x=\pm 2 $
Hence, real roots of
$ \{x-f'(x)\} $ and $ \pm \sqrt{2} $ .