Thank you for reporting, we will resolve it shortly
Q.
If $f(x)=f(a-x)$ and $g(x)+g(a-x)=2$ then the value of $\int\limits_{0}^{a} f(x) g(x) d x$ is
Bihar CECEBihar CECE 2007
Solution:
Given that $f(x)=f(a-x)\,\,\,...$(i)
and $g(x)+g(a-x)=2\,\,\,\,....$(ii)
Now, let $I=\int\limits_{0}^{a} f(x) g(x) d x$
$=\int\limits_{0}^{a} f(a-x) g(a-x) d x$
$\Rightarrow I=\int\limits_{0}^{a} f(x)[2-g(x)] d x$
[using (i) and (ii)]
$=\int\limits_{0}^{a} 2 f(x) d x-\int\limits_{0}^{a} f(x) g(x) d x$
$\Rightarrow I=\int\limits_{0}^{a} 2 f(x) d x-I$
$\Rightarrow 2 I=\int\limits_{0}^{a} 2 f(x) d x$
$\Rightarrow I=\int\limits_{0}^{a} f(x) d x$
Note: $\int\limits_{0}^{a} f(x) d x=\int\limits_{0}^{a} f(a-x) d x$.