Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $f(x) = \begin{cases} \frac{e^{3x} - 1}{4x} & \quad \text{for} x \neq 0 \\ \frac{k + x}{4} & \quad \text{for } x= 0 \end{cases}$ is continuous at $x = 0$, then $k =$

COMEDKCOMEDK 2012Continuity and Differentiability

Solution:

If $f(x) = \begin{cases} \frac{e^{3x} - 1}{4x} & \quad \text{for} x \neq 0 \\ \frac{k + x}{4} & \quad \text{for } x= 0 \end{cases}$ is continuous at $x = 0$,
$\therefore \:\:\: \displaystyle\lim_{x\to0+}f\left(x\right) = \displaystyle\lim _{x\to 0-}f\left(x\right) =f\left(0\right) $
$\Rightarrow \displaystyle\lim _{x\to 0+} \frac{e^{3x} - 1}{4x} = \frac{k}{4} $
$\Rightarrow \displaystyle\lim _{x\to 0+} \frac{e^{3h} - 1}{4h} = \frac{k}{4} $ $\left( \frac{0}{0} \, from \right)$
Applying L-Hospital's Rule,
$\Rightarrow \displaystyle\lim_{h \rightarrow0} \frac{3e^{3h}}{4} = \frac{k}{4} \Rightarrow k=3$