Q. If $f(x)=\displaystyle\lim _{n \rightarrow \infty} \frac{x^{3 n} \sin x+\cos x}{x^{3 n}+2}$, then find the value of $\left[f\left(\frac{\pi}{6}\right)+f\left(\frac{\pi}{3}\right)\right]$ taking $\sqrt{3}=1.73$, where $[ \,\,\,] $represents the greatest integer function.
Limits and Derivatives
Solution: