Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $f(x)=\cos (\log x)$, then $f(x) f(y)-\frac{1}{2}\left[f\left(\frac{x}{y}\right)+f(x y)\right]$ has the value :

UPSEEUPSEE 2005

Solution:

Given $f(x)=\cos (\log \,x)$
$\therefore \, f(x) \cdot f(y)-\frac{1}{2}\left[f\left(\frac{x}{y}\right)+f(x y)\right]$
$=\cos (\log \,x) \cdot \cos (\log \,y)$
$-\frac{1}{2}\left[\cos \,\log \left(\frac{x}{y}\right)+\cos\, \log (x y)\right]$
$=\cos (\log x) \cos (\log y)-\frac{1}{2} \cdot 2[\cos (\log x)\times \cos (\log y)]$
$=\cos (\log x) \cos (\log y)$
$=0$
$\therefore \, f(x) \cdot f(y)-\frac{1}{2}\left[f\left(\frac{x}{y}\right)+f(x y)\right]=0$