Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ f(x)=\cos ({{\log }_{e}}x), $ then $ f(x)f(y)-\frac{1}{2}\left[ f\left( \frac{y}{x} \right)+f(xy) \right] $ has the value:

KEAMKEAM 2004

Solution:

$ \because $ $ f(x)=\cos ({{\log }_{e}}x) $
$ \therefore $ $ f(x)f(y)-\frac{1}{2}\left[ f\left( \frac{y}{x} \right)+f(xy) \right] $
$ =\cos ({{\log }_{e}}x)\cos ({{\log }_{e}}y) $
$ -\frac{1}{2}\left[ \cos {{\log }_{e}}\left( \frac{y}{x} \right)+\cos {{\log }_{e}}(xy) \right] $
$ =\cos ({{\log }_{e}}x)\cos ({{\log }_{e}}y)-\frac{2}{2}\cos ({{\log }_{e}}x) $ $ \times \cos ({{\log }_{e}}y) $ $ =0 $