Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ f(x)=\frac{{{4}^{x}}}{{{4}^{x}}+2}, $ then $ f\left( \frac{1}{97} \right)+f\left( \frac{2}{97} \right)+....+f\left( \frac{96}{97} \right) $ is equal to

Rajasthan PETRajasthan PET 2012

Solution:

Since, $ f(x)=\frac{{{4}^{x}}}{{{4}^{x}}+2} $
$ \therefore $ $ f(1-x)=\frac{{{4}^{1-x}}}{{{4}^{1-x}}+2} $
$ =\frac{4}{4+{{2.4}^{x}}}=\frac{2}{2+{{4}^{x}}} $
$ \Rightarrow $ $ f(x)+f(1-x)=1 $
On putting $ x=\frac{1}{97},\frac{2}{97},.....,\frac{48}{97}, $
we get $ f\left( \frac{1}{97} \right)+f\left( \frac{2}{97} \right)+....+f\left( \frac{96}{97} \right)=48 $