Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(x) = begincases 3x2 + 12x - 1 , -1 le x le 2 37 - x 2 < x le 3 endcases then :
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If $f(x) = \begin{cases} 3x^2 + 12x - 1 , & -1 \le x \le 2 \\ 37 - x & 2 < x \le 3 \end{cases} $ then :
JEE Advanced
JEE Advanced 1993
Application of Derivatives
A
f (x) is increasing on [ -1, 2]
B
f(x) is continues on [ -1, 3]
C
f '(2) does not exist
D
f (x) has the maximum value at x = 2
E
0
Solution:
We are given that
$f(x) = \begin{cases} 3x^2 + 2x - 1, & -1 \le x \le 2 \\ 37 - x & 2 < x \le 3 \end{cases} $
Then on [- 1, 2], f '(x) = 6x +12
For $-1 \le x \le 2, -6 \le 6x \le 12$
$\Rightarrow \, 6 \le 6x + 12 \le 24$
$\Rightarrow \, f'(x) > 0, \forall x \in [-1 , 2]$
$\therefore $ f is increasing on [- 1, 2]
Also f (x) being polynomial for $x \in [-1,2) \cup (2,3]$
f (x) is cont. on [- 1, 3] except possibly at
At x = 2,
LHL $ = \displaystyle \lim_{h \to 0} f\left(2-h\right) = \displaystyle \lim_{h\to 0} 3\left(2-h\right)^{2} + 12 \left(2-h\right)-1 $
RHL $=\displaystyle \lim_{h \to 0} f\left(2+h\right) =\displaystyle \lim_{h \to 0} 37 -\left(2+h\right) = 35 $
and $f\left(2\right) = 3.2^{2} + 12.2 - 1 = 35 $
LHL = RHL = f(2)
$\Rightarrow $ f (x) is continuous at x = 2
Hence f (x) is continuous on [- 1, 3]
Again at x = 2
$RD =\displaystyle \lim_{h \to 0} \frac{f\left(2+h\right) -f\left(2\right)}{h} = \displaystyle \lim_{h\to0} \frac{37-\left(2+h\right)-35}{h} = 1 $
$LD = \displaystyle \lim_{h \to 0} \frac{f\left(2\right) -f\left(2-h\right)}{h} $
$=\displaystyle \lim_{h \to 0} \frac{35 -3\left(3-h\right)^{2} -12 \left(2-h\right)+1}{h} $
$= \displaystyle \lim_{h\to 0} \frac{-3h^{2} + 24h}{h} =24 LD \ne RD$
$ \therefore $ f ' (2) does not exist. Hence f (x) can not have max. value at x = 2.