Thank you for reporting, we will resolve it shortly
Q.
If $f(x)=\sqrt{3|x|-x-2}$ and $g(x)=\sin x$, then domain of $f \circ g(x)$ is
Relations and Functions - Part 2
Solution:
$f(g(x))=\sqrt{3|\sin x|-\sin x-2} $
$\therefore 3|\sin x|-\sin x-2 \geq 0$
$\sin x>0 \sin x<0$
$\sin x \geq 1 $
$\sin x \leq\left(-\frac{1}{2}\right) $
$\Rightarrow \sin x=1 $
$x =2 m \pi+\frac{\pi}{2}, m \in I $ ......(i)
$x \in\left[\frac{7 \pi}{6}, \frac{11 \pi}{6}\right] \Rightarrow x \in\left[2 n \pi+\frac{7 \pi}{6}, 2 n \pi+\frac{11 \pi}{6}\right], n \in I $....(ii)
$\therefore \text { Union of (i) and (ii) is the domain of fog(x). } $