Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $f(x + 2y, x - 2y) = xy$, then $f(x, y)$ is equal to

WBJEEWBJEE 2011

Solution:

Given $f(x+2 y, x-2 y)=x y$...(i)
Let $a=x+2 y$ and $b=x-2 y$
$\therefore a+b=2 x$ and $a-b=4 y$
From Eq. (i), we get
$ f(a, b) =\left(\frac{a+b}{2}\right)\left(\frac{a-b}{4}\right) $
$=\frac{a^{2}-b^{2}}{8} $
$ \therefore f(x, y) =\frac{x^{2}-y^{2}}{8} $