Q.
If $f(x) =
\begin{cases}
\frac{\sqrt{1+ kx }-\sqrt{1- kx }}{ X } & \text{for $-1 \leq x<0$} \\[2ex]
2 x^{2}+3 x-2 & \text{for $0 \leq x \leq 1$}
\end{cases}$
continuous at $x =0$, then $k$ is equal to
Continuity and Differentiability
Solution: