Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $f \left(x\right)=\sqrt{1+cos^{2}\left(x^{2}\right)}$, then the value of $f '\left(\frac{\sqrt{\pi}}{2}\right)$

Continuity and Differentiability

Solution:

We have, $f \left(x\right)=\sqrt{1+cos^{2}\left(x^{2}\right)}$
$\Rightarrow f '\left(x\right)=\frac{1}{2}\times\frac{-2\,sin\,x^{2}\,cos\,x^{2}}{\sqrt{1+cos^{2}\,x^{2}}}\left(2x\right)$
$=\frac{-sin\,2x^{2}}{\sqrt{1+cos^{2}\,x^{2}}} (x)$
$\therefore f '\left(\frac{\sqrt{\pi}}{2}\right)$ $=-\frac{\sqrt{\pi}}{2}\cdot\frac{sin\,2\left(\frac{\pi}{4}\right)}{\sqrt{1+cos^{2}\left(\frac{\pi}{4}\right)}}$
$=-\sqrt{\frac{\pi}{6}}$