Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f x=√1-√1-x2, then at x=0
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If $f x=\sqrt{1-\sqrt{1-x^2}}$, then at $x=0$
NTA Abhyas
NTA Abhyas 2022
A
$f\left(x\right)$ is differentiable as well as continuous
B
$f\left(x\right)$ is differentiable but not continuous
C
$f\left(x\right)$ is continuous but not differentiable
D
$f\left(x\right)$ is neither continuous nor differentiable
Solution:
$L f^{\prime}(0)=\displaystyle\lim _{h \rightarrow 0} \frac{f(0-h)-f(0)}{-h}$
$=\displaystyle\lim _{h \rightarrow 0} \frac{\sqrt{1-\sqrt{1-h^2}}}{-h}$
$=\displaystyle\lim _{h \rightarrow 0} \frac{\sqrt{1-\sqrt{1-h^2}}}{-h} \times \frac{\sqrt{1+\sqrt{1-h^2}}}{\sqrt{1+\sqrt{1-h^2}}} $
$=\displaystyle\lim _{h \rightarrow 0} \frac{-1}{\sqrt{1+\sqrt{1-h^2}}}=\frac{-1}{\sqrt{2}}$
$R f^{\prime}(0)=\displaystyle\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=\displaystyle\lim _{h \rightarrow 0} \frac{\sqrt{1-\sqrt{1-h^2}}}{h}$
$=\displaystyle\lim _{h \rightarrow 0} \frac{1}{\sqrt{1+\sqrt{1-h^2}}}=\frac{1}{\sqrt{2}} $
Therefore, $f(x)$ is not differentiable at $x=0$.
since $L f^{\prime}(0)$ and $R f^{\prime}(0)$ are finite therefore, us at $x=0$.