Thank you for reporting, we will resolve it shortly
Q.
If $f$ : $R \to R$ defined by $f \left(x\right)=\frac{2x-7}{4}$ is an invertible function, then find $f^{-1}$.
Relations and Functions - Part 2
Solution:
let $y=\frac{2x-7}{4}$
$\Rightarrow x=\frac{4y+7}{2}$
$\therefore f ^{-1}\left(y\right)=\frac{4y+7}{2}$
$\Rightarrow f ^{-1}\left(x\right)=\frac{4x+7}{2}$