Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $f$ : $R \to R$ defined by $f \left(x\right)=\frac{2x-7}{4}$ is an invertible function, then find $f^{-1}$.

Relations and Functions - Part 2

Solution:

let $y=\frac{2x-7}{4}$
$\Rightarrow x=\frac{4y+7}{2}$
$\therefore f ^{-1}\left(y\right)=\frac{4y+7}{2}$
$\Rightarrow f ^{-1}\left(x\right)=\frac{4x+7}{2}$