Q. If $f$ is a positive real valued differentiable function satisfying the functional rule $f^2(x+y)=f^2(x)+f^2(y)-2 \sqrt{x}-2 \sqrt{y}+2 \sqrt{x+y}-1$ for all $x, y \geq 0$ such that $\underset{h \rightarrow 1}{\text{Lim}} \frac{f(h)-2}{h-1}=\frac{1}{2}$, then find the number of solution(s) of the equation $\frac{f(|x|)}{\lambda|x|+1}=1(\lambda >0)$.
Continuity and Differentiability
Solution: