Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ f'(a),f'(b) $ is continuous at $ f'(c) $ , then a equals

JamiaJamia 2015

Solution:

If $ O=\overline{X}+\overline{Y} $ is continuous at $ y=a\cos (\omega t-kx) $ , then $ [{{M}^{o}}LT] $ $ [{{M}^{o}}{{L}^{-1}}{{T}^{o}}] $ $ [{{M}^{o}}{{L}^{-1}}{{T}^{-1}}] $ $ [{{M}^{o}}L{{T}^{-1}}] $ $ {{t}^{-1}} $ [using L? Hospital's rule] $ {{t}^{\frac{-1}{2}}} $ $ {{t}^{\frac{1}{2}}} $ $ t $ $ [FL{{T}^{-2}}] $