Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $f\left(\frac{2 x+3}{3 x+5}\right)=x+4 x \neq-\frac{5}{3}, \frac{2}{3}$ and $\int f(x) d x= Ax + B \ln |3 x-2|+ C$, then $3 B - A =$

TS EAMCET 2020

Solution:

We have, $f\left(\frac{2 x+3}{3 x+5}\right)=x+4$
Put, $\frac{2 x+3}{3 x+5}=y$
$\Rightarrow 2 x+3=3 x y+5 y$
$\Rightarrow x=\frac{5 y-3}{2-3 y}$
$\therefore f(y)=\frac{5 y-3}{2-3 y}+4=\frac{5 y-3+8-12 y}{2-3 y}$
$\Rightarrow f(y)=\frac{7 y-5}{3 x-2}$
$\therefore f(x)=\frac{7 x-5}{3 x-2}$
$\Rightarrow \int f(x) d x=\int \frac{7 x-5}{3 x-2} d x$
Put, $3 x-2=t \Rightarrow x=\frac{t+2}{3}$
$d x=\frac{d t}{3}=\frac{1}{3} \int \frac{7\left(\frac{t+2}{3}\right)-5}{t} d t$
$=\frac{1}{9} \int \frac{7 t-1}{t} d t=\frac{7}{9} \int d t-\frac{1}{3} \int \frac{d t}{t}$
$=\frac{7}{9} t-\frac{1}{9} \log t+C$
$=\frac{7}{9}(3 x-2)-\frac{1}{9} \log |3 x-2|+C$
$=\frac{7}{3} x-\frac{1}{9} \log |3 x-2|+C$
Here, $A=\frac{7}{3}, B=-\frac{1}{9}$
$\therefore 3 B-A=3\left(-\frac{1}{9}\right)-\frac{7}{3}=-\frac{8}{3}$