Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $f:[1,10] \rightarrow[1,10]$ is a non-decreasing function and $g:[1,10] \rightarrow[1,10]$ is a non-increasing function. Let $h(x)=f(g(x))$ with $h(1)=1$, then $h(2)$

Application of Derivatives

Solution:

$ x > 1 \Rightarrow f(x) \geq f(1)$
$x > 1 \Rightarrow g(x) \leq g(1) $
$ \Rightarrow f(g(x)) \leq f(g(1)) $
$ \Rightarrow h(x) \leq 1 .....$(i)
Range of $h(x)$ is subset of $[1,10]$
$\Rightarrow h(x) \geq 1.....$(ii)
By (i), (ii) we have $h(x)=1 \Rightarrow h(2)=1$