Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f:[ 0, (π /2) ]→ [0, ∞ ] be a function defined by y= sin ( (x/2) ) , then f is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If $ f:\left[ 0,\,\,\frac{\pi }{2} \right]\to [0,\,\,\infty ] $ be a function defined by $ y=\sin \left( \frac{x}{2} \right) $ , then $ f $ is
Jharkhand CECE
Jharkhand CECE 2013
A
injective
B
subjective
C
objective
D
None of these
Solution:
We have, $ y=\sin \frac{x}{2} $ and $ 0\le x\le \frac{\pi }{2} $
$ \Rightarrow $ $ 0\le \frac{x}{2}\le \frac{\pi }{4} $
$ \Rightarrow $ $ 0\le \sin \frac{x}{2} $
$ \le \frac{1}{\sqrt{2}} $ $ \Rightarrow $
$ \left( 0,\,\,\frac{1}{\sqrt{2}} \right)\subset [0,\,\,\infty ) $
So, function is not surjective but function is injective as for any
$ 0\le x\le \frac{x}{2},\,\,\sin \frac{x}{2} $ gives unique image.