Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If equation $(Z-1)^{n}=Z^{n}=1 \quad(\forall n \in N)$ has solutions, then $n$ can be

NTA AbhyasNTA Abhyas 2022

Solution:

Solution
$ \begin{array}{l} (Z-1)^{n}=Z^{n} \\ \Rightarrow|Z-1|=|Z| \Rightarrow x=\frac{1}{2} \ldots \text { (i) } \\ Z^{n}=1 \\ \Rightarrow|Z|=1 \\ \Rightarrow x^{2}+y^{2}=1 \ldots \text { (ii) } \end{array} $
From (i) \& (ii), we get
$ \begin{array}{l} \frac{1}{4}+y^{2}=1 \\ \Rightarrow y=\pm \frac{\sqrt{3}}{2} \\ \Rightarrow \frac{1}{2}+\frac{\sqrt{3}}{2} i \text { and } \frac{1}{2}-\frac{\sqrt{3}}{2} i \text { can be the solutions } \end{array} $
which would exist, when $n$ is a multiple of 6
$\left(\because \arg \left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)=\tan ^{-1} \sqrt{3}=\frac{\pi}{3} \Rightarrow\right.$ Least value of $n$ is equal to
$\left.\frac{2 \pi}{\frac{\pi}{3}}=6\right)$