Q. If equation $\sin ^{-1} \sqrt{ x }+\cos ^{-1} \sqrt{ x ^2-1}+\tan ^{-1} \tan y = k$ has atleast one solution, then $k \in$ $\left(\frac{p \pi}{2}, \frac{q \pi}{2}\right)$, where $p, q \in I$, then value of $(p+q)$ is greater than or equal to
Inverse Trigonometric Functions
Solution: